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ABSTRACT 

Peltier, W.R., Farrell, WE. and Clark, J.A., 1978. Glacial isostasy and relative sea level: a 
global finite element model. In: M.N. ToksSz (Editor), Numerical Modeling in Geo- 
dynamics. Tectonophysics, 50: 81-110. 

We review the subject of glacial isostatic adjustment and the structure of global models 
which have been developed to describe this phenomenon. Models of glacial isostasy have 
two basic ingredients: (1) an assumed deglaciation history, and (2) an assumed constitu- 
tive relation for the rheology of the planetary interior. Although both of these “function- 
als of the model” are imperfectly known, the parameters which are required to describe 
them are simultaneously constrained by observations of relative sea level. By comparing 
the model predictions of relative sea levei for times subsequent to a major deglaciation 
event at a global distribution of sites, with the observed history of relative sea level at 
these sites, rather stringent bounds may be placed upon the model parameters. 

INTRODUCTION 

Obse~ations of changes in the earth’s shape produced by mass loads 
applied on its surface continue to provide a wealth of information concern- 
ing the physical properties of the interior. Such changes of shape are associ- 
ated in general with both elastic and anelastic strains and with variations of 
the gravitational field, In order to deduce material properties from strain ob- 
servations, assumptions must be adopted regarding the nature of the material 
of which the planet is composed. These assumptions are usually cast in the 
form of a constitutive relation connecting the stress r and its time derivative 
i to the strain E and its rate of change 6. The subject of the earth’s rheology 
has always been one of the most controversial in geophysics. 

Jeffreys has long maintained that an anelastic (lossy) rheology was impor- 
tant in seismology but only recently (Liu et al,, 1976) have other seismolo- 
gists become concerned with the effects that deviations from perfect 



82 

Hookean elasticity have on elastic wave propagation. At first glance this may 
seem surprising since the fact that the earth’s mantle is anelastic (at least for 
deviatoric stresses which persist for thousands of years) has been appreciated 
for the better part of this century. Qualitatively this knowledge was based 
upon the recognition that the earth’s shape continued to change after the 
last major deglaciation of the surface had been completed (a process which 
began about 2 . lo4 years ago and ended ca 0.5 . 104). In formerly glaciated 
regions (e.g., Fennoscandia, Canada) old strandlines were found to be 
located hundreds of metres above present-day sea level. Detailed investiga- 
tion of the stratigraphic record (in Fennoscandia) indicated a more or less 
exponential uplift of the surface of the solid earth with respect to local sea 
level. The rate of uplift has been a decreasing function of time since deglacia- 
tion, but is not yet complete. 

With the advent of radiocarbon dating (e.g., Libby, 1952) and its subse- 
quent application to the quantification of relative sea level data the detailed 
global history of the relaxation of shape following deglaciation began to 
emerge. Walcott (1972) has discussed these data (with emphasis on the 
Laurentide uplift) in detail and we may summarize their dominant features 
by noting that where the ice was thickest the land is now elevated above sea 
level, but only a short distance away from the two main centres of glaciation 
old beaches are drowned. 

The generally exponential character of the uplift data is strongly sug- 
gestive of a simple relaxation process, and it is not surprising that they were 
initially interpreted in terms of a viscous fluid model of the interior (Haskell, 
1935, 1936,1937; Vening Meinesz, 1937; Niskanen, 1948). This model is, of 
course, the antithesis rheologically of the Hookean elastic model which, at 
that time, had been found to accord well with seismic observation. In order 
to fit the observed relaxation times (ca lo3 years) fluid models with molecu- 
lar viscosities on the order of 1O22 poise (cgs) were required. This magic num- 
ber has existed in the literature for over 40 years. Our recent attempts to 
quantify the extent of our ignorance of this parameter have been motivated 
by several concerns. In the first instance we would like to know, as accu- 
rately as possible, how the viscosity varies with radius in the mantle. Sec- 
ondly, and more fundamentally, we wish to understand the microphysics of 
the process(es) by which mantle material “creeps” in response to an applied 
stress. Finally, using “improved” viscosity models we wish to study the 
breakup and disintegration of the Pleistocene ice caps and the impact which 
this event had upon the rotation of the earth. These facets of the problem 
are of fundamental importance to climatology. In the remainder of this 
introduction we will discuss the first two questions in turn. 

The transport coefficient for momentum, v, (i.e., the viscosity) plays a 
decisive role in geodynamic models of long timescale processes in the plane- 
tary interior. For example, since the Rayleigh number for thermal convec- 
tion, Ra, is such that Ra a v-l, the higher the viscosity the less vigorous will 
be the convection forced by a given superadiabatic temperature gradient. As 
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v increases the efficiency of convective heat transport decreases; thus the 
magnitude of this parameter has a direct impact upon the thermal history of 
the earth. If the viscosity were to increase sufficiently rapidly with depth 
then convection in the lower mantle would be inhibited. If one associates the 
downgoing slabs of plate tectonic theory with the descending limbs of cold 
thermal boundary layers of the global convective circulation, then seismic 
focal mechanism data (Isacks and Molnar, 1971) suggest that the slab 
encounters some resistance to continued vertical motion near a depth of 650 
km. This resistance has been attributed by some to a rapid increase of viscos- 
ity, assumed to be a consequence of the spinel-post-spine1 phase change. In 
order that convection be effectively inhibited from penetrating this hypothe- 
sized boundary an increase in viscosity of several orders of magnitude is 
required. Such a large viscosity increase at this depth ought to be detectable 
through careful analysis of the relaxation data. 

Until rather recently (Cathles, 1975; Peltier, 1974; Peltier and Andrews, 
1976) it has generally been believed that the isostatic adjustment data did in 
fact require a rapid increase of viscosity with depth. The strongest evidence 
was presented by McConnell (1968) through an analysis of the Fennoscandia 
data. In order to obtain resolution for lower mantle viscosity, however, his 
analysis made use of an inferred relaxation time for the n = 2 harmonic of 
the gravitational field of approximately lOI sec. This inference was based 
upon two assumptions: (1) that the earth had a “genuine” non-hydrostatic 
equatorial bulge, and (2) that this bulge was itself caused by Pleistocene gla- 
ciation. The relaxation time was then deduced by interpreting historical 
changes in the length of the day as being a consequence of the collapse of 
the bulge. This interpretation led McConnell to suggest lower mantle viscosi- 
ties on the order of 1O25 poise. 

McKenzie (1966) arrived at a similar conclusion which was again based 
upon an interpretation of the non-hydrostatic equatorial bulge. He assumed, 
as had been suggested in Munk and Macdonald (1960), that the excess bulge 
was a relic from a time when the earth was spinning faster than at present 
and its continued existence then suggested that the viscosity of the deep 
mantle must be extreme. This conclusion, and likewise McConnell’s, was 
completely undermined by Goldreich and Toomre (1969) who showed that 
the non-hydrostatic bulge upon which both arguments were based was only 
an artifact of the spherical harmonic analysis in terms of which its existence 
had originally been suggested. The relaxation data from Fennoscandia did 
not, in themselves, suggest or even support the existence of a steep viscosity 
gradient in the upper mantle. McConnell (1968) elected not to fit his own 
long wavelength relaxation data, giving arguments as to why these should be 
inaccurate. 

More recently Parsons (1972) has shown through a “resolving power” 
analysis of McConnell’s original data that these are simply incapable of pro- 
viding any information on the viscosity of the mantle at depths in excess of 
about 600 km. This is due to the relatively small horizontal scale of the Fen- 
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noscandian rebound. The usefulness of these data therefore fades at just. 
those depths at which we become most interested. It is the existence of new 
data associated with the recovery of the larger scale Laurentide region (most 
of Canada) which has encouraged our re-examination of the isostatic adjust- 
ment process in an attempt to test the plate resistance hypothesis. Since the 
dominant wave number of the relaxation in this region corresponds to spheri- 
cal harmonic degrees of the order of n z 5 whereas the Fennoscandia data 
provide information on II = 16 we expect that the Canadian data are poten- 
tially able ro resolve viscosity variations throughout the entire mantle. On the 
basis of analyses of this data Cathles (1975) and Peltier and Andrews (1976) 
have shown that the observed recovery is incompatible with a viscosity profile 
which is a rapidly increasing function of depth and in fact both studies 
found that a uniform mantle viscosity with v 2 lo’* poise gives a reasonable 
fit to the data. These interpretations were based, however, upon theoretical 
models which were not consistent gravitationally in that the surface of the 
ocean was not constrained to remain an equipotential surface during and fol- 
lowing deglaciation. One of the main purposes of the present paper is to 
summarize recent work which has remedied this defect and in the process 
has reinforced the original conclusions. 

Although the inference of viscosity from relaxation data does not require 
a microphysical model of the creep mechanism, it is nevertheless true that 
the number which one assigns to this parameter may exhibit a dependence 
upon the model assumed. From a continuum mechanical point of view, 
microphysical models may be classified as either Newtonian or non-New- 
tonian. In the former case the relation between the stress and strain-rate 
tensors is linear and the coefficient of proportionality is the Newtonian vis- 
cosity, whereas in the latter the relation is non-linear and the effective viscos- 
ity is therefore stress dependent. When a Newtonian constitutive relation is 
emplqyed then one is implicitly assuming that the creep mechanism is 
Herring-Nabarro or Coble or some other mechanism which leads to a linear 
relation between r and C. For the Herring-Nabarro mechanism (Herring, 
1959) the eqUiValent Newtonian viscosity VN is: 

VN = (h%‘/a&a) exp[(E + pV,)/hT] (1) 

where h is Boltzmann’s constant, T the absolute temperature, V, the activa- 
tion volume, a the grain radius (assumed constant), E the activation energy 
for self diffusion of the rate limiting species, p the pressure, S2 the atomic 
volume, and a0 (x5) is a dimensionless constant. The constitutive relation is 
then r = v,e. All microphysical mechanisms lead to expressions for the vis- 
cosity which are explicit functions of the thermodynamic coordinates. If we 
knew the way in which these coordinates varied with depth and correct val- 
ues for the other parameters then we could deduce the viscosity depth pro- 
file directly (e.g., Sammis et al., 1977). Such, however, is unfortunately not 
the case. In interpreting the postglacial relaxation data what we are obliged 
to do is to suppress the explicit dependence of v upon p, T, etc. and to 
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include such dependence in the model through an assumed depth depen- 
dence. We then attempt to find the v(r) which best fits the observations. 

The existence of microphysical mechanisms which lead to linear macro- 
scopic constitutive relations has provided some solace to those who would 
construct mathematical models of the stress relaxation associated with iso- 
static adjustment or of the mantle convective circulation. This is clearly due 
to the fact that a linear constitutive relation is easier to manage than a non- 
linear:_:one. However, recent experimental evidence (Ashby, 1972; Stocker 
and Ashby, 1973; Post and Griggs, 1973; Kohlstedt and Goetze, 1974) on 
the creep of mantle material (mostly olivine single crystals) suggests strongly 
that the rate limiting process is not linear. The experimental data rather sug- 
gests a power law creep equation with a stress exponent m = 3. Weertman 
and Weertman (1975) have reviewed the interpretation of these data and 
their implications in some detail. 

A general form of the power law creep equation with m = 3 may be writ- 
ten as: 

6 = r(o/b*)(E.ca/hT)(u//.+ 

where the self diffusion coefficient D for the rate limiting species is 

(2) 

D = Do exp[-“LJVa] 

in which y is a dimensionless constant, b is the length of the Burghers vector 
of the dislocation, and where p is the elastic shear modulus. The remaining 
symbols are the same as in eq. 1. We may invert eq. 2 to write 7 = ~~~6 
where VNN is now a function of stress so that the constitutive relation is non- 
linear. The laboratory data which suggest eq. 2 are, of necessity, taken for 
creep rates which are enormously in excess of those which are associated 
either with rebound or with convection (i.e., 10e6 s-l as opposed to lo-l6 
s-l). The interpretation therefore requires a huge extrapolation of the actual 
data. 

In the models of isostatic adjustment described below we assurrze that the 
stress-strain relation is Newtonian. In fact we employ a model earth which 
is a simple linearly visco-elastic (Maxwell) solid. What we seek to accomplish 
is a direct test of this constitutive relation, and the test demands the resolu- 
tion of two distinct questions. Firstly, is it possible with such a model to fit 
the observed relative sea level data? If the answer to this question is an un- 
ambiguous “yes” then we must furthermore attempt to understand the 
extent to which non-Newtonian models are capable of providing similar accord 
with the data. Here we shall only be concerned with an attempt to answer the 
first question. Brennan (1974) and Crough (1977) have made initial attempts 
to address the second but much further work remains to be done in this area. 

The data which we must interpret concern the location with respect to 
present day sea level of raised or submerged beaches, the age of which may 
be determined by application of 14C dating methods. These histories of rela- 



tive sea level are a record of the manner in which the earth and its ice sheets 
and oceans responded to the cataclysmic redistribution of surface mass asso- 
ciated with the last major climatic change. They are the “seismograms” of 
ultra-low frequency geodynamics and - to continue the analogy - the 
deglaciation event was the equivalent “earthquake”. In order to interpret 
these relative sea level data we must be able to construct the “synthetic seis- 
mograms” of the process. That is, given a certain model of deglaciation and a 
rheological model of the earth we need a theory which can predict relative 
sea level as a function of time everywhere where continent and ocean meet. 
The solution of this forward problem and of the inverse problems related to 
it (Peltier, 1976) are now practicable and the theoretical model and initial 
results of its application are reviewed below. 

THE IMPULSE RESPONSE OF A MAXWELL EARTH 

The simplest rheological model in terms of which both the instantaneous 
elastic and the long time scale viscous reactions to surface loading may be 
accommodated is that for a Maxwell solid. The stress-strain relation for a 
Maxwell medium is (Malvern, 1969): 

(3) 

where Tkl and ekl are respectively the tensors for stress and strain and where 
12 and h are the conventional Lame parameters of elasticity. The dot denotes 
time differentiation. The first thing to note about eq. 3 is that it is linear. We 
can under&and its physical content most simply by representing both ten- 
sors in terms of their Laplace transforms, i.e., by using the transform pair: 

?kl = s dt e-‘* Tkl 

0 
(4) 

and similarly for e kt. In eq. 4 B is the Bromwich path. In the Laplace trans- 
form domain of the imaginary frequency s eq. 3 becomes: 

Fkl = A(s) gkk6kl + %4s) e”kl 

where X(s) and p(s) are the following “compliances”: 

(5) 

h(s) = 
X*s+pK/v 

s + p/v 
: p(s) = .-l!LL 

s + cl/v 

where K = X + $/J is independent of s. We note that in terms of these compli- 
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antes the Laplace t~sformed constitutive relation has the same form as 
that for a Hookean elastic solid. 

We can see clearly the way this material “works” by considering the two 
separate limits s -, = and s + 0 which correspond to short time scale and 
long time scale behaviour respectively (via the Tauberian theorems). Note 
that both s and p/v have the dimensions of inverse time. The “Maxwell time” 
is just T, = v/p. For t << T, (i.e., s >> p/v) we see from eq. 6 that X(s) + h 
and p(s) j fi so that the material behaves as a Hookean elastic solid. In the 
opposite limit, t >> T,, h(s) --, K, p(s) --, 2vs and in the time domain the 
stress-strain, relation becomes 

rk,3 = &&&t + 2&l (7) 

which is just that for an incompressible Newtonian fluid. The Maxwell solid 
is therefore “initially” elastic in its response to an applied stress and “fi- 
nally” Newtonian viscous. The transition time between these asymptotic 
extremes is T,,, = 0 (lo* years). Thus for times in excess of a few hundred 
years after unloading the Maxwell earth behaves as a Newtonian viscous 
fluid. The constitutive relation for a standard linear solid (the most general 
visco-elastic model) differs from eq. 3 only in the addition of terms involving 
ekl itself. The addition of such terms introduces a second viscosity coeffi- 
cient associated with the Kelvin-Voigt element and there is thus dissipation 
associated with the short time scale response. Such rheologies are currently 
being investigated in the course of constructing earth models which have seis- 
mic velocity dispersion due to anelasticity (Liu et al., 1976; Kanamori and 
Anderson, 1977). 

To solve the surface loading problem for Maxwell models we make use of 
the “Correspondence Principle” first described by Biot (1954) and Lee 
(1955). The principle is very simple to apply since it amounts to nothing 
more than a direct exploitation of the analogy between the visco-elastic con- 
stitutive relation (5) and that for a Hookean elastic solid. What we do is to 
solve an equivalent elastic problem many times fordifferent values of the 
Laplace transform variable s to construct the “s-spectrum” of the solution. 
We then invert the spectrum to obtain its time domain form (Peltier, 1974). 

The appropriate Laplace transformed and linearized field equations, 
respectively for the balance of momentum and for the pe~urbation of the 
gravitational potential are: 

Y*~-Y(%&%)-JQ?~ +g_v*@&z,=O (Sa) 

v%$ = -4nq * (pii) (8b) 

where p = p(r) is the density field in the basic hydrostatic equ~ibrium con- 
figuration, g = g(r) is gravitational acceleration in the same state, _u is the dis- 
placement field, $I the perturbation of the ambient gravitational potential, 
and G the gravitational constant. In eq. 8 v - (pg) = p’ has been substituted 
from the time integral of the continuity equation. The tilda, as before, repre- 
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sents implicit dependence upon the Laplace transform variable s. Thus 1 in 
eq. 8 is given by eq. 5. In eq. 8a the inertial force is suppressed because of 
the long time scale of the phenomenon in which we are interested. The sec- 
ond and fourth terms on the left hand side of eq. 8a require additional 
explanation. That the second term should appear in the elastic limit is well 
known (Love, 1911) and arises due to the existence of the hydrostatic pre- 
stress in the compressible medium. Since the ambient state is assumed hydro- 
static ap/ar = -pg where p(r) is the ambient pressure field. In an elastic dis- 
placement the material effectively transports its prestress with it. The fourth 
term in eq. 8a is the buoyancy force, since p’ = 0 . (pg) from the continuity 
equation. If the background density field is adiabatic then this term should 
not appear in the viscous limit. It has been discussed by Cathles (1975) and 
by Peltier (1978). 

We seek solutions to eq. 8 for (5, 4) when the earth is deformed by gravi- 
tational interaction with a point mass load which is placed on its surface at 
t = 0 and instantaneously removed. If the physical properties of the interior 
(p, p, X, V) are functions of radius only then the response will be a function 
or (I; 8, s) only, where 8 is the angular distance from the load. We may then 
expand u and Cp as: 

2 = C U,(r, s)P,(cos e)g, + Vn(r, s) c aP,(cos e) 
ae eo 

n=O 1 

where Un(r, s), Vn(r, s), &(r, s) are spectral amplitudes for the harmonic dis- 
turbance of degree n and imaginary frequency s. Subject to appropriate 
boundary conditions on r = Q (the earth’s surface) we may construct solu- 
tions for the spectral amplitudes in the form (Peltier, 1974): 

u, h,(r, s)/g 

V, = @2+(r) . L(r, s)/g (10) 

4 l,n k(r, s) j 

where 4, = 41,~ + G2,,, and kn is the perturbation of the gravitational po- 
tential due to the mass of the applied load. $2,n is independent of s since the 
applied load is assumed to have a s(t) time dependence. The triplet of 
dimensionless scalars (h,, 1,) k,) thus constitute the non-dimensional spectral 
form of the impulse response of the system. They are the visco-elastic ana- 
logues of the so-called surface load “Love Numbers” of elasticity. Only the 
doublet (h,, k,) concerns us here. An example of the spectral surface &(a, s) 
is shown in Fig. 1 for an earth model in which v = m to a depth of 112.5 km 
(the lithosphere), v = 10z2 poise between the base of the lithosphere and the 
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Fig. 1. The spectral surface hz(a, s) for the earth model described in the text which has a 
“lithosphere” of thickness T = 112.5 km at the surface r = u. Note that for large n 2 
15Ohr s 0 indicating that such short wavelength disturbances do not relax viscously. 
They are entirely supported by the lithosphere in which u = 00. 

core mantle boundary, and v = 0 throughout the core. The elastic structure 
of the model is “Gutenburg-Bullen A”. In Fig. 1 we have in fact plotted 
!$(a, s) = h,(a, s) - hf where hf is the large s elastic asymptote for each 
value of n (Peltier, 1974). In Fig. 1 it is clear that an additional asymptote 
exists for these spectra at small s. 

It may be shown directly that these spectra have exact normal mode 
expansions of the form (Peltier, 1976): 

h,(s) = 5; & + hf 
3 

(11) 

where the s7 are a set of poles (a different set for each n) which lie on the 
negative real axis in the complex s-plane. The 5 are simply the residues at 
these poles and thus measure the extent to which a given normal mode is 
excited by the point forcing. A relaxation diagram showing the location of 
these poles for all n is shown in Fig. 2. The poles on this plot are marked 
with labels MO, CO, etc. which denote specific families which are distin- 
guished from one another (Peltier, 1976) by the way in which the shear 
energy within them is distributed in radius. For example in CO, the funda- 
mental core mode, the shear energy maximizes near the core-mantle bound- 

arY. 
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Fig. 2. Relaxation diagram for the earth model with lithosphere showing the location and 
multiplicity of the poles in the relaxation spectrum for each value of n. The ordinate is 
the logarithm of the inverse relaxation time and the relaxation times are all non-dimen- 
sionabed with a time scale of lo3 years. 

The above normal mode expansions of h,(s) and k,(s) have simple time 
domain representations: 

h,(t) = c r,?e-+ + hfp(t) 
i 

(12) 

Remember that these are the nondimensional spectral amplitudes for a tem- 
porally impulsive surface mass loading. If the load were allowed to remain on 
the surface for all t > 0 the time dependent harmonic amplitudes which 
result are obtained from the above simply by convolution with a Heaviside 
step function to give a form which has been previously labelled (Peltier and 
Andrews, 1976): 

h;(t) = F g (1 -e-5+) + h? = h? V(t) + hf 
i 

Now notice that in the limit t + m these amplitudes are just: 

Lim hf(t) = 7 $-+ hf = Lim h,(s) 
t-m I S-+0 

(13) 

(14) 
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The mechanism of isostatic compensation is thus clearly described in terms 
of these time dependent harmonic amplitudes. The number Ej(c/#) for 
each wavenumber n describes the viscous contribution to the final isostat- 
ically adjusted amplitude of the disturbance. An example of the hz ‘(t) is 
illustrated in Fig. 3 for the previous earth model. 

We may obtain Green functions for various signatures of the response in 
terms of the Love Numbers h, and h, by summing infinite series as described 
by Farrell (1972) for the elastic problem and by Peltier (1974) for the visco- 
elastic equivalent. For example, the space and time dependent radial dis- 
placement of the original spherical surface is (for a unit applied point mass 
load) : 

u,H@, t) = $ ij hf(t)P,(cos e) 
e n-o 

and the gravity anomaly on the deformed surface is: 

A.&e, t) = -$ c [n - 2h:(t) - (n + l)h~(t)]P,(cos 6) 
en 0 

(15) 

(16) 

whereas the perturbation of the ambient gravitational potential on the 
deformed surface is (M, is the mass of the earth): 

@ye, t) = g ij (1 + kf;‘- ~:)P,(c~~ e) 
en 0 

(17) 

We will see in the next section that the latter is particularly important inso- 
far as the prediction of relative sea level is concerned. Here we illustrate the 
Green functions in Fig. 4 where U, H* v(e, t) for the previous earth model is 
shown. This function has been normalized by multiplication with %O” to 
remove the geometric singularity and U? v(O, t) .= uf’( 8, t) - uf(f3, t). If a 
lithosphere is not included in the model then uFv is singular in the limit 
t -+ 00 (Peltier, 1978) so that without a lithosphere is not possible to calcu- 
late the set of isostatic Green functions which obtain in this limit. This sin- 
gularity is simply a consequence of the physical fact that if the planet is 
everywhere viscous then a point mass placed on its surface will eventually 
sink to the planet’s centre since this is the only position at which it will feel 
no net force. Since the gravity anomalies which we observe are associated 
with the extent of isostatic disequilibrium, in order to predict them with the 
model we require the infinite time Green function and thus need a litho- 
sphere. 

Given the Green functions determined as described above we may deduce 
the response of the earth model to the gravitational forcing associated with a 
surface load which has an arbitrary space-time dependence. Since the model 
is linear the solution under such circumstances may be obtained simply by 
invoking the principle of superposition. If we had a set of data which exactly 



Fig. 3. The relaxation surface h, HV(a, t) for the earth model with lithosphere. Note that 
for h, >” 150hf,i”(o, t) z 0 so that sufficiently short wavelengths show no viscous relaxa- 
tion. This was pointed out previously in connection with Fig. 1. 

Fig. 4. Viscous part of the radial displacement Green function flv(B, t) for the earth 
model with lithosphere. The effect of the geometric singularity at 6 = 0 has been removed 
for the purpose of illustration by multiplication with “00”. 
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recorded the time dependence of the variation of local radius AR(8, #, t) as 
a function of position on the surface (f?, 4) then the model prediction of this 
data would take the form: 

AR(0, 4, t) = jjda’ j- dt’ u,(B/B’, $I$‘, t/t’M8’, $‘, t’) (19) 
0 

where U, is the kernel in the convolution integral, da’ the element of surface 
area, and L is the surface mass load functional which has the dimensions of 
mass per unit area (i.e., density X thickness). If the redistribution of mass on 
the surface takes place at a single instant of time then we can do the tem- 
poral part of the three variable convolution in eq. 18 analytically. The result 
is simply (Peltier and Andrews, 1976): 

ARH(8, $, t) = jjda’ ~:(e/e’, UG’, t)L(e’, $‘) (19) 

For a more general history of load redistribution we may obtain the solution 
by the superposition of forms like eq. 19 which are appropriately weighted 
and phased in time. 

Inspection of eq. 19 reveals two fundamental difficulties in applying the 
theory both of which are associated with L. Since the surface load must con- 
serve mass and since it consists of two distinct parts associated respectively 
with the melting of the ice and the simultaneous filling of the ocean basins 
we may expand L as: 

L = PrLr(e, $, t) + PwLo(e, $, t) (26) 

where pr and pw are the density of ice and water respectively, and LI and Lo 
are the corresponding thickness. We assume that the hydrological cycle is 
closed so that mass conservation demands: 

s dS1 pwLo = M, = - jda pILI = -M, (21) 

which is clearly an integral constraint on the model load history, Given 
M,(t), the time dependent mass flux to the ocean basins (assumed negative 
for melting), we can convert MO to a uniform equivalent time dependent rise 
of sea level which we call: 

MO(t) 
SEUS = ~ 

PW.AO 
(22) 

where A0 is the surface area of the world ocean which we may assume to a 
good approximation is not affected by the sea level rise. Now SEUs is an 
equivalent rise of sea level and we do not wish to suggest by eq. 22 that the 
sea level rise is uniform everywhere over the global ocean. Clearly. it could 
not be uniform for then the “new” ocean would have a surface which was 
not everywhere an equipotential. Given MI = -MO we must in fact determine 



Fig. 5. The thickness of the Laurentide ice sheet in the model deglaciation hi&q at two 
instants (a) Wisconsin maximum and (b) eight thousand years before present. Notice that 
the ice is assumed to retreat initially from over Hudson’s Bay leaving high stands to the 
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the spatial distribution of MO in the course of solving the problem. This will 
lead us to the Sea Level Equation which was described by Farrell and Clark 
(1976) and this will be discussed in the next section. 

The second problem is associated with the determination of Lr(8, #, t), 
the deglaciation chronology. In order to specify this function three distinct 
types of geological information are needed. We first assume that eq. 22 is 
correct to first order and as a measure of S EuS(t) we take relative sea level 
data from sites which are remote from the main centres of deglaciation. Such 
data indicate a net submergence which is on the order of 75-80 m since the 
last glacial maximum. Given S Eus(t) we compute MO(t) from eq. 22 then 
from mass conservation we get M,(t) directly. We next employ end moraine 
data which provide isochrons on the time dependent position of the edges of 
the major ice sheets. Knowing from this data the surface area of the major 
ice sheets as a function of time and the total mass which they must contain, 
the time dependent mass is partitioned among the major ice sheets in pro- 
portion to their instantaneous areas. Finally within each ice sheet and at 
each time we distribute the mass according to steady state ice mechanical 
arguments (Patterson, 1972) with allowance for other field data which make 
it possible to refine the distribution further. Such a “first guess” reconstruc- 
tion of the major ice sheets (Fennoscandia and Laurentide) is tabulated in 
Peltier and Andrews (1976) and in Fig. 5a, b we show two time slices 
through the Laurentide ice history for 16 KBP and 8 KBP, respectively. In 
Fig. 6 we compare the corresponding S EUS(t) with the data described by 

TIME 1000 YEARS 8.P 

16 12 6 4 0 

Fig. 6. The equivalent “eustatic” sea level curve for the deglaciation history tabulated in 
Peltier and Andrews (1976) compared to the observed eustatic curve of Shepard (1963). 
This constraint upon the deglaciation model is clearly satisfied. 
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Shepard (1963). Clearly our distintegration history fits this integral con- 
straint quite accurately. 

It must be emphasized that the ice sheet reconstruction described above is 
only approximate. The fact that we can make such a first guess, however, 
and one which we believe is reasonably accurate allows us to proceed with 
the solution of the forward problem. Given this deglaciation history we 
attempt to find, at first by guessing, the radial variation of viscosity which 
makes it possible to fit the observed relative sea level data. If we can find a 
viscosity profile which allows us to fit this data to some acceptable accuracy 
then we can proceed to refine both our knowledge of M,(B, 4, t) and of v(r) 
by employing the inverse theory outlined in Peltier (1976). The inverse prob- 
lem is clearly non-linear because neither MI nor v(r) are known. We seek to 
deduce both directly from the relative sea level data by proceeding itera- 
tively. We first fix M, and refine V; we then fix v and refine MI, continuing 
until (as we hope!) the process converges. 

THE SEA LEVEL EQUATION 

In the last section we left a major question unanswered and we turn to its 
resolution here. When the ice sheets melt and their meltwater is discharged 
to the ocean basins we must determine where in the oceans this water goes. 
This is clearly necessary if we wish to evaluate reponse integrals like eq. 18. 
Although we are able to obtain a reasonable a priori estimate for L,(B, $, t) 
as described in the last section we can as yet say little about Lo(8, 4, t) apart 
from the fact that it must conserve mass and thus satisfy the integral con- 
straint eq. 22. By imposing the additional constraint that the surface of the 
ocean must be an equipotential surface at all times we may in fact deduce 
L,(O, @, t) from LI(B, q5, t). Application of this constraint has led us (Farrell 
and Clark, 1976) to an explicit equation for the time variation of relative sea 
level locally. We review briefly the construction of this sea level equation in 
the remainder of this section. 

Clearly the Green function for the forced variation of the gravitational po- 
tential must play a fundamental role in this discussion. We note that @H/g has 
the dimensions of length and begin by enquiring as to the meaning of this 
length scale. If we were to assume a single instant of melting then the net 
change of potential @ at the earth’s surface r = a would be given by the con- 
volution of @H with all mass loads as: 

@(O, $4 t) = P,@“* L1 + Pvdf* s (23) 
I 0 

where the abbreviations (l) and (L) represent convolutions over the ice and 
oceans, respectively, and where we have replaced Lo by S, the local increase 
(decrease) of water thickness. The reason for this will become clear momen- 
tarily. The potential change @ includes the effect due to the deformation of 
the surface of the planet since the function @” contains the Love number h,. 



91 

This change in potential causes a change in the sea level with respect to the 
deformed surface of the solid earth in the amount (Farrell and Clark, 1976): 

(24) 

where the constant C is determined to ensure conservation of mass. Equation 
24 is valid for sufficiently small changes S of the local bathymetry. It is im- 
portant to note that S, by construction, is the local variation of sea level 
with respect to the surface of the solid earth and thus is precisely the relative 
sea level which one observes. Substituting eq. 24 into eq. 23 then gives: 

(25) 

To determine C we note that the integral over the surface area of the oce- 
ans of the product ~$3 must equal the instantaneous value of the total mass 
which has been lost by the ice sheets at time t. Thus: 

H 

(PwS)o = Pw 
( 
PI $ LI 

4H 
+pw- s 

> 
0 + (C)opw = ---M,(t) 

* g* 
I 0 

(26) 

The minus sign on the r.h.s. of eq. 26 is required since M,(t) < 0 for load 
removal as discussed in the last section. Since C = constant thus (C)o = CAo, 
thus: 

c=-W-l ( pIT&,I+pwF?!Y s o 
PWAO Ao g, g* ) 

I 0 

(27) 

and in eqs. 26 and 27 we have used ( j. to indicate an integral over the sur- 
face area of the oceans. 

With C given by eq. 27, eq. 25 is an integral equation for S which we call 
the sea level equation. It is an integral equation since S appears not only on 
the 1.h.s. but also in the convolution integrals on the right. Given the deglaci- 
ation history LI(8, $, t) and thus M,( t) we may deduce the history of relative 
sea level S(6, r$, t) at any point on the surface (0, qb) by inverting this integral 
equation. 

In order to make the solution of eq. 25 practicable within the context of 
current (and foreseeable) limitations upon computing resources we are forced 
to discretize our description of the phenomenon both in time and in space. 
What we do in practice is to divide the “active” surface area of the earth into 
a number of finite elements which cover all of the ocean basins and that por- 
tion of the surface area of the continents at which actual deglaciation occurs. 
In addition we discretize the system in time and allow in the process for the 
fact that the deglaciation history and simultaneous ocean loading are not 
instantaneous. We assume that the mass load upon the finite element with 
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centroid at i may be described by: 

P 

L(r’, t) = c L,(+l(t - tl) (28) 
I=1 

where tl (1= 1, P) are a series of times which bracket the entire loading his- 
tory at d and the &(r_‘) are the loads applied or removed at the discrete 
times tl. We allow the loads upon the “active” elements to change only at 
the times tl and the times tl are common to all active elements. This discrete 
approximation to the smooth functions L(r_‘, t) may be made arbitrarily 
accurate by choosing a set of tl with sufficiently small At = tl+l - tl. In prac- 
tice we sample the deglaciation history and the response at a uniform At = 
lo3 years. 

With the above discrete specification of the load history in time we may 
write eq. 25 in the form: 

S(r, t) = jjpwS(r’, t)GE(L-i)dy + j&Q’, t)GE(I-f)df 
0 I 

+ & ll L,(f)@?~-<, t - Wr’ -&Us(t) --K,(t) 

o+r 

(29) 

where we have expanded @H/g = GE + GHV into its elastic and viscous parts 
(Peltier, 1974; Peltier and Andrews, 1976) and the ice thickness has been 
represented simply as L, = I. We note furthermore that in eqs. 28 and 29 L, 
is a density weighted thickness. The function S EUS(t) corresponds to the first 
term in eq. 27, i.e.: 

SEUS(t) = 
PI 

JJ PWAO I 
I(<‘, t)df 

and K,(t) to the second term, i.e.: 

K,(t) = -A- 
Ao [ [ldc [[pWGE@” --PM?, t)dr’ 

0 0 

+ JJd/’ JJplGE(r/ -f)I&‘, t)dr’ 

+ ijdY& jj L@)GHV(f -r’, t - t,)dr’}] (31) 
0 0+1 

In order to solve eq. 29 we proceed as mentioned above by splitting the 
entire active area of the surface into a number of discrete finite elements. 
The area of the jth element we call Ei and on this area we assume that the 
load is piecewise constant in time. If Q is the centroid of the ith element 
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then the discrete version of eq. 29 is just: 

sip = Aijajy + Bijbj, + CipljCjl - 2 Ejbj, 
PWAO 

- At [Ei { AtjajD + Bijbjp + Cipljcjlj 1 (32) 

in which a summation convention over repeated indices is implied such that 
i = 1, N for terms involving Ujp ; J ‘=N+l,Mfortermsinvolvingbjp;j=l,M 
for terms involving Cjl; 1 = 1, PO; i = 1, N. The upper limits in the summations 
are as follows: 

N = the number of finite elements in the oceans 
M = the total number of active elements (ocean plus ice) 

(33) 
PO = the number of time intervals (At = lo3 years) since deglaciation com- 

menced 

The lower case matrices are load dependent and are defined as follows: 

uiP = S( ci 3 tp ), total relative sea level change atri for time t, 
bi, = I(ci, tP), total thickness of ice removed from ri by time tP 
Cip = L,(II_~), incremental load change atri at time tP 

(34) 

The upper case matrices depend only upon the geometry of the problem and 
the earth model. They are: 

Aij = pw SSGE(~i -f)df 

Ei 

Ciplj = JJGHV(Li -d, tp - t,)di (35) 

Ej 

In eq. 34 aiP is an unknown matrix which is to be determined whereas hip, 
Cip are input matrices which describe the deglaciation history. 

The major computational expense in implementing the theory is con- 
nected with the calculation of the three “interaction matrices” Aij, B,, C’ipu. 
These matrices depend only upon the geometric relations among the finite 
elements into which the “active” portion of the surface has been divided. 
In general, these interactions depend not only upon the separation be- 
tween the field point Ii and the controid _rj of the element of area Ej and 
the magnitude of Ej, but also upon the shape of the element itself. In the 
interest of efficiency we have elected initially to suppress this shape depen- 
dence and to replace each finite element by a circular disk of equivalent area 
in calculating the matrix components. This assumption may of course be 
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relaxed. We construct a table of disc factors as described by Farrell (1973) 
for an equivalent elastic problem and by Peltier and Andrews (1976) for the 
visco-elastic system. The normalization of the elements of this table is how- 
ever different from that employed in these papers. For the visco-elastic prob- 
lem the necessity of this was pointed out by Peltier and Andrews (1976). 
The new normalization factor is essentially the square of the angular separa- 
tion between the field point and the centre of the disc (Clark, 1977). Linear 
interpolation in a regular table of disc factors is then employed to deduce 
the matrix components. 

Given these geometry and earth model dependent matrices and the matrix 
specification of the deglaciation history we solve eq. 32 at each point in time 
by applying conventional relaxation methods. At each time tp we make a 
first guess to the matrix tip and substitute this into eq. 32 to compute the 
residual. This residual is then fed back to update the first estimate and the 
process is continued until convergence is achieved. In practice three such 
iterations are normally sufficient (Farrell and Clark, 1976). 

INITIAL RESULTS 

Here we will discuss the results of applying the discrete form of the sea 
level eq. 32 in an initial series of calculations. These results have all been 
described elsewhere (Clark, 1978; CIark et al., 1978; Peltier, 1978) and the 
interested reader is referred to these articles for a more detailed discussion. 
The earth model employed is the first for which Green functions were 
derived in Peltier (1974) and later subjected to preliminary test in Peltier and 
Andrews (1976). It has an elastic structure which is Gutenburg-Bullen “A”, 
an inviscid core and no lithosphere. Throughout the mantle the viscosity has 
a constant value of 10” poise (cgs). It is the model which Cathles (1975) and 
Peltier and Andrews (1976) have claimed provides a good fit to a wide range 
of relative sea level data although this conclusion was in both cases based 
upon calculations which were not gravitationally self-consistent. The glacial 
history employed is that tabulated in Peltier and Andrews (1976) although 
this was refined somewhat by linear interpolation to give ice thickness at 
each active point at equispaced times separated by At = lo3 years. This 
deglaciation history gives the equivalent “eustatic” sea level curve previously 
shown in Fig. 6. 

The first output from the calculation is the global prediction of the rela- 
tive sea level variation since the initiation of melting. It is assumed that the 
major ice sheets were in isostatic equilibrium before retreat commenced. 
Four time slices through the global solution are shown in Fig. 7. The sea 
level rise (fall) is contoured in metres. Clearly the rise of sea level in the “far 
field” of the ice sheets is not uniform as must be the case if the surface of 
the new ocean is to remain equipotential. The large fall of sea level relative 
to the surface of the solid earth in regions which were once ice covered (Fen- 
noscandia, Laurentide) is also clearly evident. From this output we may 



Fig. 7. The global rise of sea level (in metres) at four times subsequent to the onset of 
melting. Note the large negative values corresponding to a fall of local sea level in the 
vicinity of the Laurentide and Fennoscandia ice sheets. The rise of sea level is not uni- 
form in the far field showing explicitly that the concept of eustatic sea level is of limited 
utility. 

directly deduce relative sea level for any point on the surface for which we 
have observations available. Inspection of a complete set of output data 
(Clark et al., 1978) reveals that the surface may be divided roughly into six 
major regions within which there exists a fairly unique relative sea level sig- 
nature. These regions are shown in Fig. 8 and their characteristics are as fol- 
lows. 

In I there is continuous emergence following deglaciation and these 
regions are those which were once under the ice sheets. In II there is contin- 
uous submergence due to the collapse of the proglacial forebulge (Peltier, 
1974). In addition there is a rather narrow region separating I and II in 
which the relative sea level history is not monotonic, initial emergence is fol- 
lowed by submergence. This effect is due to the migration of the forebulge 
inwards (Peltier, 1974). In region III there is slight time dependent emer- 
gence and this occurs only over a very limited area of the globe (Clark et al., 
1978). In IV there is continuous oceanic submergence and in V there is 
emergence which begins immediately upon the cessation of melting (Clark et 
al., 1978). Region VI consists of all continental shorelines which are suffi- 
ciently remote from the main deglaciation centres. Such locations are char- 
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Fig. 8. The global extent of regions I-VI in each of which the sea level curve has a certain 
characteristic signature. The characteristics of this signature are described in the text. 

acterized by emergence due to crustal tilting which is forced by the adjacent 
water load {Walcott, 1972). In the following paragraphs we compare briefly 
the predictions of the model with observed relative sea level data in each of 
these regions. The sources of the data shown on the following figures are 
listed in abbreviated form as an appendix to the main bibliography. 

Figure 9 shows observations in region I respectively for the Laurentide 
(Ottawa Islands) and Fennoscandia (Oslo Fjord) regions and the super- 
imposed predictions of the model for the two sites. At the former location 
the prediction is ~onsiderabIy in excess of the observed emergence indicating 

too0 YRS BP 

Fig. 9. Comparison of theory and observation for two sites in region I. A. Ottawa Islands, 
Hudson’s Bay. B. Oslo Fjord, Norway. 
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either that the load removed over Hudson’s Bay was somewhat large or that 
the rheology is incorrect or both. The fit to the data at the Oslo Fjord site is 
much better although the amount of emergence predicted is again somewhat 
in excess of the observation. 

In Fig. 10 we compare theory with observation at a sequence of locations 
extending southward along the eastern seaboard of the continental U.S. in 
region II (Clark et al., 1978). Although continuous submergence is observed 
and predicted the model calculation gives excessive submergence, the error 
of fit being on the order of 100% for some sites. This again suggests that the 
load removed may have been too large or that the earth model is in error. In 
Fig. 11 the prediction is compared to observation at an equivalent location 
with respect to the Fennoscandia ice sheet, namely along the Atlantic coast 
of France. The dashed curve is for northern France (region II) and the solid 
curve for southern France (region III). All of the data along the French coast 
should lie between these two extremes and the gross error of fit is seen to be 
small (Clark, 1978). 

In Fig. 12 we compare theory and observation at a sequence of locations 
near the edge of the ice sheet for the Cumberland Peninsula on Baffin Island 
(Canada). This comparison is from Clark (1978) and illustrates the character- 
istic non-monotonic nature of the relative sea leve1 curves from such regions 
which was predicted by Peltier (1974) by direct inspection of the Green 
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Fig. 10. Comparison of theory and observation for four sites along the eastern seaboard 
of the U.S. in region II. A. Brigantine, New Jersey. B. Virginia. C. Georgia. D. Bermuda. 
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Fig. 11. Comparison of theory and observation for a segment of region II along the Atlan- 
tic coast of France. The solid curve is the prediction for sites in southern France (region 
III) while the dashed curve ia for northern France (region II). The data from the French 
coast are seen to be bounded by these extremes. 
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Fig. 12. Comparison of theory (A) with observations (B) at a sequence of sites near the 
edge of the ice sheet on the Cumberland peninauia of Baffin Wand (boundary between 
region I and region II). 
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Fig. 13. Comparison of theory and observation at two sites in region III: (A) Florida, (B) 
Gulf of Mexico. 
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Fig. 14. An example of theory vs. observation at a site in region IV. This is for Oahu, 
Hawaii. The large divergence near 6 * lo3 years before present is presumed to be associ- 
ated with the volcanic eruption which took place at that time and is thus associated with 
local tectonics. 
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functions for the present earth model. Such sites are found on the boundary 
between regions I and II. 

Examples of the comparison between theory and observation in region III 
are shown in Fig. 13 respectively for Florida and for the Gulf of Mexico. For 
the latter location the sea level record is extremely long and for both the fit 
of the theory to the observations is rather good. These comparisons were 
described previously in Clark et al. (1978) and some additional discussion is 
found in Peltier (1978). 

As an example from region IV we show the comparison of theory and ob- 
servation for Oahu, Hawaii (from Clark, 1978) in Fig. 14. Here again the 
magnitude of the misfit is acceptably small, the largest deviation occurring at 
roughly five thousand years before the present at the time of the last major 
volcanic eruption and therefore presumably due to local tectonics. In Fig. 15 
(Clark, 1978) the relative sea level data from New Zealand (region V) is com- 
pared to the theoretical calculation. Here again the error of fit is observed to 
be small. Finally in Fig. 16 (Clark et al., 1978) we compare with theory the 
observations at a site in region VI. These data are for Recife, Brazil and illus- 
trate the characteristic emergence at continental shorelines in the far field. 
The solid curve is the prediction for the coastline and the dashed curve for a 
site on the continental shelf 100 km east of Recife. The latter shows contin- 

77 
I 1 I I I , I I I I 

IO 8 6 4 2 0 

1000 YRS BP 
Fig. 16. Comparison of~theory and obsewation for a site in region V. This is for New Zea- 
land. The point is that even in the far field the fit to the observations is rathergood. 
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Fig. 16. Comparison of theory and observation for a site (Recife, Brazil) in region VI. 
This illustrates the characteristic emergence due to crustal tilting along continental mar- 
gins in the far field. 

uous submergence characteristic of region IV. The Fairbridge curve (light 
line) is bracketed by these two predictions. 

DISCUSSION AND SUMMARY 

The comparison of theory and observation detailed in the last section is 
encouraging in that it has provided a positive test of both the rheology 
model and of the deglaciation history. As is clear from the way in which the 
theory has been constructed, the problem of glacial isostatic adjustment is 
highly non-linear in that the observed response (relative sea level data) is 
dependent both upon the rheology and upon the deglaciation history. If we 
are to discover a viscosity profile and an unloading history which are unique 
in the sense of being known within limits prescribed by our knowledge of 
the data then we must be able to perform an initial linearization of the prob- 
lem with some confidence. We have done this by employing a “first guess” 
deglaciation history which is in accord with the best information currently 
available from Quaternary geology. That this first guess load history and a 
first guess viscosity profile (also conditioned by a priori knowledge) have led 
to substantial accord with the observations convinces us that we may pro- 
ceed with the iterative refinement of both functionals in the manner out- 
lined in Peltier (1976) and the refinement of 1(6,& t) has already begun 
(Clark, 1977). 

There remain certain characteristic misfits between theory and observa- 
tion which will provide guidance as we proceed with this work. Most nota- 
bly, the relative sea level data for the Laurentide region show rather large 
departures from theory in the near field. Although we expect that the incor- 
poration of a lithosphere into the model (Peltier, 1978) may remedy some of 
the defects it is rather unlikely, indeed impossible, that the major errors are 
derivative of this source. Either the earth model is more fundamentally in 
error or the load history is incorrect. Because the large errors of fit are con- 
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fined to the Laurentide region and do not exist in the vicinity of Fenno- 
scandia we suspect that the latter is more likely to be the case. These ques- 
tions are under current consideration. 

Because these characteristic misfits still remain in the near field of the 
Laurentide ice sheet we are as yet not able to confirm or to deny with com- 
plete confidence the conclusions previously drawn by Cathles (1975) and by 
Peltier and Andrews (1976). If “fine tuning” of these calculations does 
reconfirm these conclusions (as we suspect will be the case), namely that 
within the context of a Newtonian viscous rheology the viscosity of the 
mantle must be essentially constant in order to fit the rebound data, then 
the implications for mantle convection are important. Peltier (1972) has 
shown that the mixing length for convection in the mantle would then be on 
the order of the mantle thickness itself. 

Aside from determining a mantle viscosity profile which allows us to fit 
the data we would also like to know the envelope of viscosity profiles which 
are capable of satisfying all of the data to within a standard error. This quan- 
tification of the extent to which the rebound information allows us to 
remain ignorant is perhaps the most important information which we could 
extract from the point of view of the solid state theory of microphysical 
creep mechanisms. 

Here we have described only the constraints upon a Newtonian rheology 
which are implied by the relative sea level data themselves. There are at least 
two further observational data which are also capable of providing important 
information. The first of these, and perhaps the most important, are data 
concerning the present day gravity anomalies over the rebound centres. 
These data are particularly important because they provide information 
which is completely distinct from that afforded by the relative sea level data. 
Gravity data, in a real sense, “looks into the future” because such data essen- 
tially measure the degree of current gravitational disequilibrium and are 
therefore indicative of the amount of uplift (subsidence) remaining which is 
well known. The gravity data therefore “see” the long time tail of the relaxa- 
tion spectrum whereas the sea level data do not. In order to predict the grav- 
ity anomaly with the present theory we require a model with a lithosphere 
(Peltier, 1978). 

Besides the gravity data we may also expect to obtain interesting 
(although perhaps not so immediately useful) information by analysis of the 
non-tidal deceleration of rotation which is forced by the deglaciation event. 
The large shift in surface mass is clearly sufficient to produce a relatively 
large change in the components of the inertia tensor and thus a change in the 
length of the day. Although interesting in itself and in providing an addi- 
tional constraint on deep mantle viscosity (O’Connell, 1971) this effect may 
be most interesting from a climatological point of view. It should be clear 
that there remains a significant amount of work to be done before we may 
properly claim a complete understanding of the phenomenon of glacial isos- 
tasy . 
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